JOURNAL ARTICLE

Assessing the susceptibility to local buckling at the femoral neck cortex to age-related bone loss

Taeyong Lee, Jae Bong Choi, Benjamin W Schafer, W Paul Segars, Felix Eckstein, Volker Kuhn, Thomas J Beck
Annals of Biomedical Engineering 2009, 37 (9): 1910-20
19585240
Although it is known that long cortical bone structurally alter their area moment of inertia with age related bone loss maintaining their bending strength, the incidence of fragility fractures associated with cortical thinning still prevails. We hypothesize that cortical thinning with aging increases the local buckling susceptibility under abnormal or eccentric loads, and initiates fracture. The paper presents a series of 3D geometrical model derived from CT scans of a human femoral neck used to simulate age-related bone loss. The purpose of the model is to predict the susceptibility of local buckling at the femoral neck in falls by elderly folks. Geometric three-dimensional models of femoral neck cortices were developed from 7 human cadaver femurs (4 female, 3 male, 52-68 years). Three age related femoral neck models were simulated by either reducing (young age-related model) or increasing (old age-related model) the outer cortical surfaces in the radial-direction, by 1-mm. The control model was the middle-age related model. The inner cortex diameter was also adjusted to equilibrate the compressive stresses, based on the load-profile of a single-legged stance. Based on the old age related model, two additional "fragile" models were simulated by reducing the compressive load profile by 10 and 20% changing the inner cortex diameter, respectively. Using these models for each specimen, the consequence of a fall on the greater trochanter was evaluated. The Finite Strip Method (FSM) was used to investigate the association between local buckling at the femoral neck and the load to failure. Under constant loading, buckling progressively reduced the load to failure with aging, as seen in 2/7 of the middle age (by 9-15%) and 5/7 of the old age (by 7-32%) related models. In the fragile models, a 51% reduction in the load to failure was noted. Structural adaptation to age-related bone loss might preserves the bending strength under physiologic loads, but cortical thinning effects the buckling ratio reaching a critical threshold that would make the bone susceptible to local buckling at the femoral neck increasing the risk of fracture in a fall.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
19585240
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"