Add like
Add dislike
Add to saved papers

Transient lower esophageal sphincter relaxation and esophageal motor response.

BACKGROUND: Gastroesophageal reflux is caused by transient lower esophageal sphincter relaxations (TLESRs) in healthy individuals and in most patients with gastroesophageal reflux disease (GERD). Refluxate is normally propelled by pharyngeally induced swallowing events, but TLESRs may also be accompanied by retrograde esophageal motor responses (EMRs). These contractions have not previously been investigated and their effect on esophageal clearance is not known. The aim of this study was to assess the frequency of EMRs after TLESR in healthy individuals and GERD patients and to develop an animal model for further investigation of EMRs.

MATERIALS AND METHODS: The frequency of TLESRs and esophageal body contractions after TLESRs was assessed using ambulatory manometry in five healthy individuals and five GERD patients. An animal model was developed for reproducible provocation of TLESRs and subsequent EMRs.

RESULTS: Patients with GERD have significantly more TLESRs than healthy individuals. However, post-TLESR EMRs were not more frequent in the GERD group. All post-TLESR EMRs presented as simultaneous contractions of the esophagus. The feline model allowed reproducible initiation of the esophageal motor response after TLESR, showing that EMRs can be induced by external mechanoreceptor stimulation simultaneously with LES relaxation. This experimental design imitates the conditions after fundoplication in humans.

CONCLUSIONS: The study demonstrated that GERD patients have significantly more TLESRs in comparison with healthy individuals, but these were only incidental to EMRs. Further research is needed to improve our understanding of esophageal motility disorders. The animal model presented offers a feasible tool for investigating TLESR-induced esophageal motility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app