Add like
Add dislike
Add to saved papers

Role of p38 MAPK in burn-induced intestinal barrier breakdown.

BACKGROUND: Severe burn results in intestinal barrier breakdown, which may lead to the generation of a systemic inflammatory response and distant organ injury. Intestinal barrier integrity is regulated, in part, by the tight junction protein myosin light chain kinase (MLCK). Previous studies in cell culture have shown that activation of p38 MAPK plays an important role in modulating intestinal barrier function. We hypothesized that (1) severe burn up-regulates p38 MAPK activation and results in increased intestinal permeability via augmented expression of MLCK, and (2) inhibition of p38 MAPK will prevent the burn-induced increase in MLCK expression, resulting in improved intestinal barrier integrity.

MATERIALS AND METHODS: Male Balb/c mice were subjected to a 30% total body surface area (TBSA) full thickness steam burn, then randomized to receive an intraperitoneal injection of a p38 MAPK inhibitor (SB203580, 25 mg/kg) or vehicle. In vivo intestinal permeability to 4kDa FITC-Dextran was measured. Expression of phosphorylated p38 MAPK, total p38 MAPK, MLCK, and phosphorylated MLC from intestinal extracts was assessed by immunoblotting.

RESULTS: Severe burn increased intestinal permeability, which was associated with activation of p38 MAPK, and increased expression of MLCK. Treatment with SB203580 significantly attenuated burn-induced intestinal permeability (212 microg/mL versus 81 microg/mL, P<0.05), and decreased expression of intestinal MLCK resulting in decreased phosphorylation of MLC.

CONCLUSION: p38 MAPK plays an important role in regulating burn-induced intestinal permeability through activation of MLCK. Inhibition of p38 MAPK may be an important therapeutic target aimed at attenuating intestinal barrier breakdown by preventing the burn-induced alterations in tight junction proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app