COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Transsphenoidal pituitary macroadenomas resection guided by PoleStar N20 low-field intraoperative magnetic resonance imaging: comparison with early postoperative high-field magnetic resonance imaging.

Neurosurgery 2009 July
OBJECTIVE: To evaluate the applicability of low-field intraoperative magnetic resonance imaging (iMRI) during transsphenoidal surgery of pituitary macroadenomas.

METHODS: Fifty-five transsphenoidal surgeries were performed for macroadenomas (modified Hardy's Grade II-IV) resections. All of the surgical processes were guided by real-time updated contrast T1-weighted coronal and sagittal images, which were acquired with 0.15 Tesla PoleStar N20 iMRI (Medtronic Navigation, Louisville, CO). The definitive benefits as well as major drawbacks of low-field iMRI in transsphenoidal surgery were assessed with respect to intraoperative imaging, tumor resection control, comparison with early postoperative high-field magnetic resonance imaging, and follow-up outcomes.

RESULTS: Intraoperative imaging revealed residual tumor and guided extended tumor resection in 17 of 55 cases. As a result, the percentage of gross total removal of macroadenomas increased from 58.2% to 83.6%. The accuracy of imaging evaluation of low-field iMRI was 81.8%, compared with early postoperative high-field MRI (Correlation coefficient, 0.677; P < 0.001). A significantly lower accuracy was identified with low-field iMRI in 6 cases with cavernous sinus invasion (33.3%) in contrast to the 87.8% found with other sites (Fisher's exact test, P < 0.001).

CONCLUSION: The PoleStar N20 low-field iMRI navigation system is a promising tool for safe, minimally invasive, endonasal, transsphenoidal pituitary macroadenomas resection. It enables neurosurgeons to control the extent of tumor resection, particularly for suprasellar tumors, ensuring surgical accuracy and safety, and leading to a decreased likelihood of repeat surgeries. However, this technology is still not satisfying in estimating the amount of the parasellar residual tumor invading into cavernous sinus, given the false or uncertain images generated by low-field iMRI in this region, which are difficult to discriminate between tumor remnant and blood within the venous sinus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app