Evaluation Studies
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

In vivo MR elastography of the prostate gland using a transurethral actuator.

Conventional approaches for MR elastography (MRE) using surface drivers have difficulty achieving sufficient shear wave propagation in the prostate gland due to attenuation. In this study we evaluate the feasibility of generating shear wave propagation in the prostate gland using a transurethral device. A novel transurethral actuator design is proposed, and the performance of this device was evaluated in gelatin phantoms and in a canine prostate gland. All MRI was performed on a 1.5T MR imager using a conventional gradient-echo MRE sequence. A piezoceramic actuator was used to vibrate the transurethral device along its length. Shear wave propagation was measured transverse and parallel to the rod at frequencies between 100 and 250 Hz in phantoms and in the prostate gland. The shear wave propagation was cylindrical, and uniform along the entire length of the rod in the gel experiments. The feasibility of transurethral MRE was demonstrated in vivo in a canine model, and shear wave propagation was observed in the prostate gland as well as along the rod. These experiments demonstrate the technical feasibility of transurethral MRE in vivo. Further development of this technique is warranted.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app