JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Methyl jasmonate dramatically enhances the accumulation of phenolic acids in Salvia miltiorrhiza hairy root cultures.

Physiologia Plantarum 2009 September
The aim of this work was to examine rosmarinic acid and its derivative lithospermic acid B accumulation, as well as related gene transcript and metabolite profiling in Salvia miltiorrhiza Bunge (Lamiacae) hairy root cultures, in response to methyl jasmonate (0.1 mM). Results showed methyl jasmonate dramatically enhanced both rosmarinic acid and lithospermic acid B accumulation, from approximately 3.25 to 6.02%, and 2.94 to 19.3% of dry weight, respectively. Meantime, several rosmarinic acid biosynthetic gene transcripts were coordinately induced, with phenylalanine ammonia-lyase, cinnamic acid 4-hydroxylase, tyrosine aminotransferase, 4-hydroxyphenylpyruvate reductase and 4-hydroxyphenylpyruvate dioxygenase transcripts displaying the most rapid and substantial increases. Liquid chromatographic-tandem mass spectrometry was used to characterize the profile of metabolites involved in rosmarinic acid biosynthesis pathway, in both control and elicited-treated hairy root cultures. Further canonical correlation analysis constructed a gene-to-metabolite network, locating possible gene candidates which would directly link to phenolic acids (rosmarinic acid and lithospermic acid B) production, and thereby, would help to prompt the possibility of a key gene-based metabolic engineering for the synthesis of active pharmaceutical compounds in S. miltiorrhiza.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app