JOURNAL ARTICLE

c-Jun N-terminal kinase 1/2 activation by tumor necrosis factor-alpha induces insulin resistance in human visceral but not subcutaneous adipocytes: reversal by liver X receptor agonists

Sonia Fernández-Veledo, Rocio Vila-Bedmar, Iria Nieto-Vazquez, Margarita Lorenzo
Journal of Clinical Endocrinology and Metabolism 2009, 94 (9): 3583-93
19567513

AIMS: Obesity is associated with a chronic systemic low-grade inflammatory state. Markers of inflammation such as TNF-alpha are linked with increased risk for insulin resistance and type 2 diabetes. The objective of the present study was to dissect the molecular mechanisms that may regulate TNF-alpha-induced insulin resistance in human adipose tissue.

METHODS: We analyzed the impact of TNF-alpha on glucose uptake and insulin action in human visceral and sc adipocytes. The contribution of different intracellular signaling pathways on metabolic effects of TNF-alpha and the reversal of some of these effects with nuclear receptor agonists were also studied.

RESULTS: TNF-alpha per se increased glucose transporter-4 translocation to the plasma membrane and glucose uptake by activating the AMP-activated protein kinase/AS160 pathway in both visceral and sc adipocytes. Nevertheless, this cytokine induced an insulin-resistant state in visceral adipocytes by impairing insulin-stimulated glucose uptake and insulin signaling at the insulin receptor substrate (IRS)-1/AKT level. Activation of c-Jun N-terminal kinase (JNK) 1/2 seems to be involved in TNF-alpha-induced insulin resistance, causing phosphorylation of IRS1 at the Ser312 residue. Accordingly, silencing JNK1/2 with either small interfering RNA or chemical inhibitors impaired serine phosphorylation of IRS1, restored downstream insulin signaling, and normalized insulin-induced glucose uptake in the presence of TNF-alpha. Furthermore, TNF-alpha increased the secretion of other proinflammatory cytokines such as IL-6. Pharmacological treatment of adipocytes with liver X receptor agonists reestablished insulin sensitivity by impairing TNF-alpha induction of JNK1/2, phosphorylation of IRS1 (Ser312), and stabilizing IL-6 secretion.

CONCLUSIONS: TNF-alpha induces insulin resistance on glucose uptake in human visceral but not sc adipocytes, suggesting depot-specific effects of TNF-alpha on glucose uptake. Activation of JNK1/2 appears to be involved in serine phosphorylation of IRS1 and subsequently insulin resistance on glucose uptake, a state that can be reversed by liver X receptor agonists.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
19567513
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"