JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Stripping/flocculation/membrane bioreactor/reverse osmosis treatment of municipal landfill leachate.

This study presents a configuration for the complete treatment of landfill leachate with high organic and ammonium concentrations. Ammonia stripping is performed to overcome the ammonia toxicity to aerobic microorganisms. By coagulation-flocculation process, COD and suspended solids (SS) were removed 36 and 46%, respectively. After pretreatment, an aerobic/anoxic membrane bioreactor (Aer/An MBR) accomplished the COD and total inorganic nitrogen (total-N(i)) removals above 90 and 92%, respectively, at SRT of 30 days. Concentrations of COD and total-N(i) (not considering organic nitrogen) in the Aer/An MBR effluent decreased to 450 and 40 mg/l, respectively, by significant organic oxidation and nitrification/denitrification processes. As an advanced treatment for the leachate, the reverse osmosis (RO) was applied to the collected Aer/An MBR effluents. Reverse osmosis provided high quality effluent by reducing the effluent COD from MBR to less than 4.0mg/l at SRT of 30 days.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app