Add like
Add dislike
Add to saved papers

Bayesian coalescent inference reveals high evolutionary rates and expansion of Norovirus populations.

Noroviruses (NoV) are a leading cause of outbreaks of nonbacterial acute gastroenteritis in humans worldwide and have become an important cause of hospitalization of children in South America. NoV belong to the family Caliciviridae and are non-enveloped single stranded, positive sense, RNA viruses. NoV of genotype GII/4 have emerged worldwide, causing four epidemic seasons of viral gastroenteritis during which four novel variants emerged. Despite the importance of NoV outbreaks, little is known about the evolutionary rates, viral spread and population dynamics of NoV populations. In order to gain insight into these matters, a Bayesian Markov chain Monte Carlo (MCMC) approach was used to analyze region D or full-length VP1 gene sequences of GII/4 NoV populations isolated in Brazil or Japan, respectively. The results of these studies revealed that the expansion population growth model was the best to fit the data in both datasets. The dates of the most common recent ancestors revealed that these viruses can quickly emerge in a geographical location. A mean evolutionary rate of 1.21 x 10(-2) nucleotide substitution/site/year (s/s/y) was obtained for the VP1 gene using full-length sequences. This rate is higher than the rates reported for other rapidly evolving RNA. Roughly similar rates (1.44 x 10(-2)s/s/y) were found using region D sequences, revealing the suitability of this region for evolutionary studies, in agreement with previous reports. High evolutionary rates and fast population growth may have contributed to the vigorous initial transmission dynamics of the GII/4 NoV populations studied.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app