We have located links that may give you full text access.
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Hepatic anaplerotic outflow fluxes are redirected from gluconeogenesis to lactate synthesis in patients with Type 1a glycogen storage disease.
Metabolic Engineering 2009 May
Hepatic glucose production and relative Krebs cycle fluxes (indexed to a citrate synthase flux of 1.0) were evaluated with [U-(13)C]glycerol tracer in 5 fed healthy controls and 5 Type 1a glycogen storage disease (GSD1a) patients. Plasma glucose, hepatic glucose-6-phosphate (G6P) and glutamine (13)C-isotopomers were analyzed by (13)C NMR via blood sampling and chemical biopsy. In healthy subjects, 35+/-14% of plasma glucose originated from hepatic G6P while GSD1a patients had no detectable G6P contribution. Compared to controls, GSD1a patients had an increased fraction of acetyl-CoA from pyruvate (0.5+/-0.2 vs. 0.3+/-0.1, p<0.01), and increased pyruvate recycling fluxes (14.4+/-3.8 vs. 8.7+/-2.8, p<0.05). Despite negligible gluconeogenic flux, net anaplerotic outflow was not significantly different from controls (2.2+/-0.8 vs. 1.3+/-0.5). The enrichment of lactate with (13)C-isotopomers derived from the Krebs cycle suggests that lactate was the main anaplerotic product in GSD1a patients.
Full text links
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app