Add like
Add dislike
Add to saved papers

Diminished expression of ICOS, GITR and CTLA-4 at the mRNA level in T regulatory cells of children with newly diagnosed type 1 diabetes.

Diabetes mellitus is one of the most common chronic diseases in children. T regulatory cells (Tregs) modulate response to autoantigens and probably play a role in pathogenesis of type 1 diabetes (T1DM). The aim of the present study was the assessment of T regulatory cells including their percentages and expression of critical genes in these cells in children with newly diagnosed type 1 diabetes. The examined group consisted of 50 children with T1DM. A flow cytometric analysis of T-cell subpopulations was performed using the following markers: anti-CD4, anti-CD25 and anti-CD127 (=IL-7R). Additionally, T regulatory cells were isolated for assessment of mRNA levels for chosen genes with the real-time RT-PCR technique. The percentages of CD4(+)CD25(high)CD127(dim/-) were very low and did not differ between T1DM and control children. We did not observe any statistically significant differences between healthy and diabetic children in mRNA expression for FoxP3, IL-7R (CD127), IL-8RA, IL-10RA, IL-12A, IL-2RA (CD25), IL-21, STAT1, STAT3, SOCS2, SOCS3, TGF-beta1-R1, TGF-beta-R2 and TBX-21 genes. Interestingly the mRNA level for CTLA-4, ICOS1, IL-23, IL-27, SMAD3 and GITR were lower in Treg cells of children with diabetes compared to the control patients. No disturbances in the percentages of T regulatory cells in patients with diabetes but diminished expression of some elements important in Treg function could be the result of an immunologic imbalance accompanying the onset of the diabetes. The results of our study should be used in future research in the field of immunotherapy in pediatric diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app