JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Lysozyme, a mediator of sepsis that intrinsically generates hydrogen peroxide to cause cardiovascular dysfunction.

In septic shock, cardiovascular collapse is caused by the release of inflammatory mediators. We previously found that lysozyme (Lzm-S), released from leukocytes, contributed to the myocardial depression and arterial vasodilation that develop in canine models of septic shock. To cause vasodilation, Lzm-S generates hydrogen peroxide (H(2)O(2)) that activates the smooth muscle soluble guanylate cyclase (sGC) pathway, although the mechanism of H(2)O(2) generation is not known. To cause myocardial depression, Lzm-S binds to the endocardial endothelium, resulting in the formation of nitric oxide (NO) and subsequent activation of myocardial sGC, although the initial signaling event is not clear. In this study, we examined whether the myocardial depression produced by Lzm-S was also caused by the generation of H(2)O(2) and whether Lzm-S could intrinsically generate H(2)O(2) as has been described for other protein types. In a canine ventricular trabecular preparation, we found that the peroxidizing agent Aspergillus niger catalase, that would breakdown H(2)O(2), prevented Lzm-S- induced decrease in contraction. We also found that compound I, a species of catalase formed during H(2)O(2) metabolism, could contribute to the NO generation caused by Lzm-S. In tissue-free experiments, we used a fluorometric assay (Ultra Amplex red H(2)O(2) assay) and electrochemical sensor techniques, respectively, to measure H(2)O(2) generation. We found that Lzm-S could generate H(2)O(2) and, furthermore, that this generation could be attenuated by the singlet oxygen quencher sodium azide. This study shows that Lzm-S, a mediator of sepsis, is able to intrinsically generate H(2)O(2). Moreover, this generation may activate H(2)O(2)-dependent pathways leading to cardiovascular collapse in septic shock.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app