Add like
Add dislike
Add to saved papers

Nearest-neighbor and logistic regression analyses of clinical and heart rate characteristics in the early diagnosis of neonatal sepsis.

OBJECTIVES: To test the hypothesis that nearest-neighbor analysis adds to logistic regression in the early diagnosis of late-onset neonatal sepsis.

DESIGN: The authors tested methods to make the early diagnosis of neonatal sepsis using continuous physiological monitoring of heart rate characteristics and intermittent measurements of laboratory values. First, the hypothesis that nearest-neighbor analysis makes reasonable predictions about neonatal sepsis with performance comparable to an existing logistic regression model was tested. The most parsimonious model was systematically developed by excluding the least efficacious clinical data. Second, the authors tested the hypothesis that a combined nearest-neighbor and logistic regression model gives an outcome prediction that is more plausible than either model alone. Training and test data sets of heart rate characteristics and laboratory test results over a 4-y period were used to create and test predictive models.

MEASUREMENTS: Nearest-neighbor, regression, and combination models were evaluated for discrimination using receiver-operating characteristic areas and for fit using the Wald statistic.

RESULTS: Both nearest-neighbor and regression models using heart rate characteristics and available laboratory test results were significantly associated with imminent sepsis, and each kind of model added independent information to the other. The best predictive strategy employed both kinds of models.

CONCLUSION: The authors propose nearest-neighbor analysis in addition to regression in the early diagnosis of subacute, potentially catastrophic illnesses such as neonatal sepsis, and they recommend it as an approach to the general problem of predicting a clinical event from a multivariable data set.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app