Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

The fastest runner on artificial legs: different limbs, similar function?

The recent competitive successes of a bilateral, transtibial amputee sprint runner who races with modern running prostheses has triggered an international controversy regarding the relative function provided by his artificial limbs. Here, we conducted three tests of functional similarity between this amputee sprinter and competitive male runners with intact limbs: the metabolic cost of running, sprinting endurance, and running mechanics. Metabolic and mechanical data, respectively, were acquired via indirect calorimetry and ground reaction force measurements during constant-speed, level treadmill running. First, we found that the mean gross metabolic cost of transport of our amputee sprint subject (174.9 ml O(2)*kg(-1)*km(-1); speeds: 2.5-4.1 m/s) was only 3.8% lower than mean values for intact-limb elite distance runners and 6.7% lower than for subelite distance runners but 17% lower than for intact-limb 400-m specialists [210.6 (SD 13.2) ml O(2)*kg(-1)*km(-1)]. Second, the speeds that our amputee sprinter maintained for six all-out, constant-speed trials to failure (speeds: 6.6-10.8 m/s; durations: 2-90 s) were within 2.2 (SD 0.6)% of those predicted for intact-limb sprinters. Third, at sprinting speeds of 8.0, 9.0, and 10.0 m/s, our amputee subject had longer foot-ground contact times [+14.7 (SD 4.2)%], shorter aerial [-26.4 (SD 9.9)%] and swing times [-15.2 (SD 6.9)%], and lower stance-averaged vertical forces [-19.3 (SD 3.1)%] than intact-limb sprinters [top speeds = 10.8 vs. 10.8 (SD 0.6) m/s]. We conclude that running on modern, lower-limb sprinting prostheses appears to be physiologically similar but mechanically different from running with intact limbs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app