Add like
Add dislike
Add to saved papers

2-methoxyestradiol attenuates bleomycin-induced pulmonary hypertension and fibrosis in estrogen-deficient rats.

Pulmonary hypertension (PH) is a common and life-threatening complication of pulmonary fibrosis. Estradiol (E2) is protective in experimental PH, and its non-estrogenic metabolite 2-methoxyestradiol (2ME) prevents the development and retards the progression of monocrotaline-induced PH in male and female rats. However, the effects of E2 and 2ME on pulmonary fibrosis and associated PH have not been examined. Therefore, we compared the growth inhibitory effects of E2 and 2ME in human lung fibroblasts (hLFs) and pulmonary vascular smooth muscle cells (hPASMCs), and we investigated the effects of estrogen deficiency and 2ME on bleomycin-induced pulmonary fibrosis and PH. Intact and ovariectomized (OVX) female Sprague-Dawley rats were administered intratracheally either saline or bleomycin (15IU/kg), and a subset of OVX bleomycin-treated rats received 2ME (10microg/kg/h) for 21days. Estradiol had only limited inhibitory effects on growth in hPASMCs and no effect in hLFs, whereas 2ME exhibited strong and concentration-dependent (1-10microM) antimitogenic effects in both cell types. Bleomycin caused lung injury/PH (significantly increased lung and right ventricle (RV) weights, RV peak systolic pressure (RVPSP), and RV/left ventricle + septum ratio (RV/LV + S); caused medial hypertrophy and adventitial widening of pulmonary arteries; induced marked focal/diffuse fibrosis with diffuse infiltration of inflammatory (ED1+) cells; and resulted in 30% mortality). OVX exacerbated the disease and increased mortality (to 75%); whereas 2ME tended to reduce mortality (55.5%) and in surviving animals reduced RVPSP and RV/LV + S ratio, and attenuated vascular remodeling, pulmonary inflammation and fibrosis. This study suggests that 2ME may have protective effects in bleomycin-induced PH and fibrosis. Further investigation of 2ME in pulmonary fibrosis and PH is warranted.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app