MFTZ-1 reduces constitutive and inducible HIF-1α accumulation and VEGF secretion independent of its topoisomerase II inhibition

Mei Dai, Ze-Hong Miao, Xuan Ren, Lin-Jiang Tong, Na Yang, Ting Li, Li-Ping Lin, Yue-Mao Shen, Jian Ding
Journal of Cellular and Molecular Medicine 2010, 14 (9): 2281-91
The macrolide compound MFTZ-1 has been identified as a novel topoisomerase II (Top2) inhibitor with potent in vitro and in vivo anti-tumour activities. In this study, we further examined the effects of MFTZ-1 on hypoxia-inducible factor-1α (HIF-1α) accumulation, vascular endothelial growth factor (VEGF) secretion and angiogenesis. MFTZ-1 reduced HIF-1α accumulation driven by hypoxia or growth factors in human cancer cells. Mechanistic studies revealed that MFTZ-1 did not affect the degradation of HIF-1α protein or the level of HIF-1α mRNA. By contrast, MFTZ-1 apparently inhibited constitutive and inducible activation of both phosphatidylinositol-3-kinase (PI3K)-Akt and p42/p44 mitogen-activated protein kinase (MAPK) pathways. Further studies revealed that MFTZ-1 abrogated the HIF-1α-driven increase in VEGF mRNA and protein secretion. MFTZ-1 also lowered the basal level of VEGF secretion. The results reveal an important feature that MFTZ-1 can reduce constitutive, HIF-1α-independent VEGF secretion and concurrently antagonize inducible, HIF-1α-dependent VEGF secretion. Moreover, MFTZ-1 disrupted tube formation of human umbilical vein endothelial cells (HUVECs) stimulated by hypoxia with low-concentration serum or by serum at normoxia, and inhibited HUVECs migration at normoxia. MFTZ-1 also prevented microvessel outgrowth from rat aortic ring. These data reflect the potent anti-angiogenesis of MFTZ-1 under different conditions. Furthermore, using specific small interfering RNA targeting Top2α or Top2-defective HL60/MX2 cells, we showed that MFTZ-1 affected HIF-1α accumulation and HUVECs tube formation irrelevant to its Top2 inhibition. Taken together, our data collectively reveal that MFTZ-1 reduces constitutive and inducible HIF-1α accumulation and VEGF secretion possibly via PI3K-Akt and MAPK pathways, eliciting anti-angiogenesis independently of its Top2 inhibition.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"