JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Study of the electrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering.

In this article, a nanofibrous composite scaffold of poly L-lactic acid(PLA)/silk fibroin(SF)-gelatin was fabricated by multilayer electrospinning. To investigate the feasibility of PLA/SF-gelatin use as scaffolds, the porosity and mechanical properties were examined; in particular, the biocompatibilities were evaluated in vivo and in vitro by the means of cell adhesion and cytotoxicity testing, short-term subcutaneous implantation testing, and acute hemolysis testing according to the requirements of ISO 10993. The results showed the scaffold achieved the desirable levels of pliability (elastic up to 7.3% strain) and the appropriate breaking strength (2.22 MPa). The porosity of the SF-gelatin layer was 87% and the pore diameter was 142 nm. After 12 days of cultivation, SEM observation demonstrated the scaffold was nontoxic, biocompatible, and capable of supporting 3T3 mouse fibroblasts attachment, spreading, and growth. The hemolysis test proved the scaffolds with hemolytic rates from 3.1 to 4.5%. The subcutaneous implantation test indicated minor inflammatory reactions surrounding the scaffolds and biodegradation were initially observed in about 3 months. The desired porous structure, strong and pliable properties, combined with the ability of PLA/SF-gelatin scaffold to support cell growth in vitro, especially excellent biocompatibility in vivo, suggested potential application for tissue engineering scaffolds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app