JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Membrane steroid-binding protein 1 (MSBP1) negatively regulates brassinosteroid signaling by enhancing the endocytosis of BAK1.

Cell Research 2009 July
Brassinosteroids (BRs) are perceived by transmembrane receptors and play vital roles in plant growth and development, as well as cell in responses to environmental stimuli. The transmembrane receptor BRI1 can directly bind to brassinolide (BL), and BAK1 interacts with BRI1 to enhance the BRI1-mediated BR signaling. Our previous studies indicated that a membrane steroid-binding protein 1 (MSBP1) could bind to BL in vitro and is negatively involved in BR signaling. To further elucidate the underlying mechanism, we here show that MSBP1 specifically interacts with the extracellular domain of BAK1 in vivo in a BL-independent manner. Suppressed cell expansion and BR responses by increased expression of MSBP1 can be recovered by overexpressing BAK1 or its intracellular kinase domain, suggesting that MSBP1 may suppress BR signaling through interacting with BAK1. Subcellular localization studies revealed that both MSBP1 and BAK1 are localized to plasma membrane and endocytic vesicles and MSBP1 accelerates BAK1 endocytosis, which results in suppressed BR signaling by shifting the equilibrium of BAK1 toward endosomes. Indeed, enhanced MSBP1 expression reduces the interaction between BRI1 and BAK1 in vivo, demonstrating that MSBP1 acts as a negative factor at an early step of the BR signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app