JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Dax-1 knockdown in mouse embryonic stem cells induces loss of pluripotency and multilineage differentiation.

Stem Cells 2009 July
Dax-1 (Nr0b1) is an orphan member of the nuclear hormone receptor superfamily that has a key role in adrenogonadal development and function. Recent studies have also implicated Dax-1 in the transcriptional network controlling embryonic stem (ES) cell pluripotency. Here, we show that Dax-1 expression is affected by differentiating treatments and pharmacological activation of beta-catenin-dependent transcription in mouse ES cells. Furthermore, Dax-1 knockdown induced upregulation of multilineage differentiation markers, and produced enhanced differentiation and defects in ES viability and proliferation. Through RNA interference and transcriptome analysis, we have identified genes regulated by Dax-1 in mouse ES cells at 24 and 48 hours after knockdown. Strikingly, the great majority of these genes are upregulated, showing that the prevalent function of Dax-1 is to act as a transcriptional repressor in mouse ES cells, as confirmed by experiments using the Gal4 system. Genes involved in tissue differentiation and control of proliferation are significantly enriched among Dax-1-regulated transcripts. These data show that Dax-1 is an essential element in the molecular circuit involved in the maintenance of ES cell pluripotency and have implications for the understanding of stem cell function in both physiological (adrenal gland) and clinical (Ewing tumors) settings where Dax-1 plays a pivotal role in development and pathogenesis, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app