JOURNAL ARTICLE

Role of MEF feeder cells in direct reprogramming of mousetail-tip fibroblasts

Mengfei Chen, Xuerong Sun, Ruzhang Jiang, Wenjuan Shen, Xiufeng Zhong, Bingqian Liu, Ying Qi, Bing Huang, Andy Peng Xiang, Jian Ge
Cell Biology International 2009, 33 (12): 1268-73
19524692
Pluripotent stem cells can be induced from somatic cells by the transcription factors Oct3/4, Sox2, c-Myc and Klf4 when co-cultured with mouse embryonic fibroblast (MEF) feeder cells. To date, the role of the feeder cells in the reprogramming process remains unclear. In this study, using a comparative analysis, we demonstrated that MEF feeder cells did not accelerate reprogramming or increase the frequency of induced pluripotent stem (iPS) cell colonies. However, feeder conditions did improve the growth of primary iPS colonies and were necessary for passaging the primary colonies after reprogramming was achieved. We further developed a feeder-free culture system for supporting iPS growth and sustaining pluripotency by adding bFGF and activin A (bFA) to the medium. These data will facilitate the generation of human iPS cells without animal feeders for regenerative medicine.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
19524692
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"