Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Efficient induction of apoptosis by doxorubicin coupled to cell-penetrating peptides compared to unconjugated doxorubicin in the human breast cancer cell line MDA-MB 231.

Cancer Letters 2009 November 19
Doxorubicin (Dox) is a commonly used drug to treat various types of cancers. Previously, we demonstrated that coupling Dox to cell-penetrating peptides (CPPs) represent a valuable strategy to overcome drug resistance in MDA-MB 231 breast cancer cells. In the present study, we evaluated the properties of these Dox conjugates (Dox-CPPs) in terms of apoptosis induction. Dox-CPPs were found to induce apoptotic death in MDA-MB 231 cells at a lower dose than that needed for unconjugated Dox. Cell death induction was associated with Bax oligomerisation, release of cytochrome c, caspase activation, chromatin condensation and internucleosomal degradation. However, whereas Bcl-2 overexpression was very potent in inhibiting apoptosis triggered by Dox, this anti-apoptotic protein was largely inefficient in preventing Dox-CPPs-induced apoptosis. These observations suggest that mitochondrial disruption is the main event in Dox-induced apoptotic signaling but that Dox-CPPs are probably able to trigger additional apoptotic pathways independent of mitochondrial events. Thus, the higher efficacy of Dox conjugated to CCPs in apoptosis induction might not be due exclusively to increased drug accumulation but also to the activation of multiple apoptotic pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app