Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Deletion of Keap1 in the lung attenuates acute cigarette smoke-induced oxidative stress and inflammation.

Exposure to cigarette smoke (CS) is the primary factor associated with the development of chronic obstructive pulmonary disease (COPD). CS increases the level of oxidants in the lungs, resulting in a depletion of antioxidants, which promotes oxidative stress and the destruction of alveolar tissue. In response to CS, pulmonary epithelial cells counteract increased levels of oxidants by activating Nrf2-dependent pathways to augment the expression of detoxification and antioxidant enzymes, thereby protecting the lung from injury. We hypothesize that increasing the pathways activated by Nrf2 will afford protection against CS-induced lung damage. To this end we have developed a novel mouse model in which the cytosolic inhibitor of Nrf2, Keap1, is genetically deleted in Clara cells, which predominate in the upper airways in mice. Deletion of Keap1 in Clara cells resulted in increased expression of Nrf2-dependent genes, such as Nqo1 and Gclm, as determined by microarray analysis and quantitative PCR. Deletion of Keap1 in airway epithelium decreased Keap1 protein levels and significantly increased the total level of glutathione in the lungs. Increased Nrf2 activation protected Clara cells against oxidative stress ex vivo and attenuated oxidative stress and CS-induced inflammation in vivo. Expression of KEAP1 was also decreased in human epithelial cells through siRNA transfection, which increased the expression of Nrf2-dependent genes and attenuated oxidative stress. In conclusion, activating Nrf2 pathways in tissue-specific Keap1 knockout mice represents an important genetic approach against oxidant-induced lung damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app