JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Where are the human speech and voice regions, and do other animals have anything like them?

Modern lesion and imaging work in humans has been clarifying which brain regions are involved in the processing of speech and language. Concurrently, some of this work has aimed to bridge the gap to the seemingly incompatible evidence for multiple brain-processing pathways that first accumulated in nonhuman primates. For instance, the idea of a posterior temporal-parietal "Wernicke's" territory, which is thought to be instrumental for speech comprehension, conflicts with this region of the brain belonging to a spatial "where" pathway. At the same time a posterior speech-comprehension region ignores the anterior temporal lobe and its "what" pathway for evaluating the complex features of sensory input. Recent language models confirm that the posterior or dorsal stream has an important role in human communication, by a reconceptualization of the "where" into a "how-to" pathway with a connection to the motor system for speech comprehension. Others have tried to directly implicate the "what" pathway for speech comprehension, relying on the growing evidence in humans for anterior-temporal involvement in speech and voice processing. Coming full circle, we find that the recent imaging of vocalization and voice preferring regions in nonhuman primates allows us to make direct links to the human imaging data involving the anterior-temporal regions. The authors describe how comparison of the structure and function of the vocal communication system of humans and other animals is clarifying evolutionary relationships and the extent to which different species can model human brain function.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app