Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1.

Fibroblast growth factor-23 (FGF23) is a phosphaturic hormone that contributes to several hypophosphatemic disorders by reducing the expression of the type II sodium-phosphate cotransporters (NaPi-2a and NaPi-2c) in the kidney proximal tubule and by reducing serum 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] levels. The FGF receptor(s) mediating the hypophosphatemic action of FGF23 in vivo have remained elusive. In this study, we show that proximal tubules express FGFR1, -3, and -4 but not FGFR2 mRNA. To determine which of these three FGFRs mediates FGF23's hypophosphatemic actions, we characterized phosphate homeostasis in FGFR3(-/-) and FGFR4(-/-) null mice, and in conditional FGFR1(-/-) mice, with targeted deletion of FGFR1 expression in the metanephric mesenchyme. Basal serum phosphorus levels and renal cortical brush-border membrane (BBM) NaPi-2a and NaPi-2c expression were comparable between FGFR1(-/-), FGFR3(-/-), and FGFR4(-/-) mice and their wild-type counterparts. Administration of FGF23 to FGFR3(-/-) mice induced hypophosphatemia in these mice (8.0 +/- 0.4 vs. 5.4 +/- 0.3 mg/dl; p < or = 0.001) and a decrease in renal BBM NaPi-2a and NaPi-2c protein expression. Similarly, in FGFR4(-/-) mice, administration of FGF23 caused a small but significant decrease in serum phosphorus levels (8.7 +/- 0.3 vs. 7.6 +/- 0.4 mg/dl; p < or = 0.001) and in renal BBM NaPi-2a and NaPi-2c protein abundance. In contrast, injection of FGF23 into FGFR1(-/-) mice had no effects on serum phosphorus levels (5.6 +/- 0.3 vs. 5.2 +/- 0.5 mg/dl) or BBM NaPi-2a and NaPi-2c expression. These data show that FGFR1 is the predominant receptor for the hypophosphatemic action of FGF23 in vivo, with FGFR4 likely playing a minor role.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app