Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor.

PURPOSE: We aim to examine miR-21 expression in tongue squamous cell carcinomas (TSCC) and correlate it with patient clinical status, and to investigate its contribution to TSCC cell growth, apoptosis, and tumorigenesis.

EXPERIMENTAL DESIGN: MicroRNA profiling was done in 10 cases of TSCC with microarray. MiR-21 overexpression was quantitated with quantitative reverse transcription-PCR in 103 patients, and correlated to the pathoclinical status of the patients. Immunohistochemistry was used to examine the expression of TPM1 and PTEN, and terminal deoxynucleotidyl transferase-mediated dUTP labeling to evaluate apoptosis. Moreover, miR-21 antisense oligonucleotide (ASO) was transfected in SCC-15 and CAL27 cell lines, and tumor cell growth was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, adherent colony formation, and soft agar assay, whereas apoptosis was determined by Annexin V assay, cytochrome c release, and caspase 3 assay. Tumorigenesis was evaluated by xenografting SCC-15 cells in nude mice.

RESULTS: MiR-21 is overexpressed in TSCC relative to adjacent normal tissues. The level of miR-21 is reversely correlated with TPM1 and PTEN expression and apoptosis of cancer cells. Multivariate analysis showed that miR-21 expression is an independent prognostic factor indicating poor survival. Inhibiting miR-21 with ASO in TSCC cell lines reduces survival and anchorage-independent growth, and induces apoptosis in TSCC cell lines. Simultaneous silencing of TPM1 with siRNA only partially recapitulates the effect of miR-21 ASO. Furthermore, repeated injection of miR-21 ASO suppresses tumor formation in nude mice by reducing cell proliferation and inducing apoptosis.

CONCLUSIONS: miR-21 is an independent prognostic indicator for TSCC, and may play a role in TSCC development by inhibiting cancer cell apoptosis partly via TPM1 silencing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app