Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Molecular cloning and mRNA expression profiling of the first specific jasmonate biosynthetic pathway gene allene oxide synthase from Hyoscyamus niger.

Genetika 2009 April
In the endeavor to enhance the production of pharmaceutically valuable tropane alkaloids including hyoscyamine and scopolamine in Hyoscyamus niger, methyl jasmonate (MeJA) showed significant stimulation both in tropane biosynthetic pathway enzymes activities and tropane alkaloids yields. Therefore it was speculated that genetic engineering of jasmonate biosynthetic pathway might enhance the endogenous jasmonate concentration, followed by stimulating the production of tropane alkaloids. Herein a full-length cDNA encoding allene oxide synthase (AOS, EC 4.2.1.92), the first committed step enzyme in jasmonate biosynthetic pathway was reported (named HnAOS, GenBank accession: EF532599). HnAOS was a novel member of the cytochrome P450 (CYP74A) subfamily. Real-time quantitative PCR analysis showed that HnAOS mRNA accumulated mainly in stems, and responded significantly to wounding or methyl jasmonate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app