Add like
Add dislike
Add to saved papers

Tolerance analysis method for Shack-Hartmann sensors using a variable phase surface.

Optics Express 2006 January 10
Even after good calibration, the measurement accuracy of a Shack- Hartmann sensor can be affected by the fabrication and alignment tolerances of the wavefront sensing optical system. The shifts of the Shack-Hartmann spots caused by misalignments correspond to ray intercept errors on the detector that typically have to be converted into a meaningful input wavefront measurement error. This conversion cannot be directly obtained from a conventional tolerance analysis using optical design software, because of the intrinsic wavefront sampling by the lenslet array. The tolerancing method proposed in this paper solves the problem of converting conventional merit function degradation into input wavefront measurement error without employing a separate wavefront reconstruction algorithm. Using the proposed method, this investigation shows the effect of fabrication and misalignment errors on the accuracy of a calibrated Shack- Hartmann sensor, as a function of input wavefront vergence.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app