Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effect of electrode geometry on performance of EWOD device driven by battery-based system.

This study develops a driving system for an electrowetting-on-dielectric (EWOD) device comprising a 9 V battery, an ATmega8535 microprocessor, a DC/DC converter, two regulator ICs and a switch circuit. The driving system greatly improves the portability of the EWOD device and is capable of generating a square wave with voltages ranging from 50~100 V(pp) and frequencies in the range 1~5 kHz. A series of experimental and numerical investigations are performed to investigate the effect of the conducting electrode geometry on the droplet velocity in the EWOD device. Three different electrode configurations are considered, namely a linear array of square electrodes, a series of interdigitated electrodes having either two or three fingers, and a series of interdigitated electrodes having five or six fingers. The experimental results show that the corresponding droplet velocities are 7.25 mm/s, 8.17 mm/s and 7.82 mm/s, respectively. The simulation results indicate that the pressure difference induced within the droplets actuated by the square, interdigitated (2323) and interdigitated (5656) electrodes has a value of 15.5 N/m², 262 N/m² and 141.1 N/m², respectively. The corresponding droplet velocities are 33.8 mm/s, 72.7 mm/s and 64.5 mm/s, respectively. Overall, the experimental and numerical results indicate that the interdigitated (2323) electrode optimizes the transportation of the droplets in the EWOD device. The improved droplet velocity obtained using this particular electrode configuration is attributed to an increased length of the contact line between the droplet and the actuating electrode, which in turn increases the driving force.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app