Evaluation Studies
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Enhanced electrochemiluminescence of CdSe quantum dots composited with CNTs and PDDA for sensitive immunoassay.

Electrochemiluminescence (ECL) of CdSe quantum dots (QDs) was greatly enhanced by the combination of carbon nanotubes (CNTs) and poly (diallyldimethylammonium chloride) (PDDA) in the CdSe QDs film, and could successfully be used to develop a sensitive ECL immunosensor for the detection of human IgG (Ag). The novel CdSe QDs-CNTs composites exhibited high ECL intensity, good biocompatibility, and high stability, which held great promise for the fabrication of the ECL biosensors with improved sensitivity. After PDDA as a binding linker was conjugated to the CdSe QDs-CNTs composite film on the electrode, the ECL signal was significantly enhanced. Subsequently, gold nanoparticles (GNPs) assembled onto the CdSe QDs-CNTs/PDDA modified electrode could amplify the ECL signal once again. After antibody (Ab) was immobilized onto the electrode through GNPs, the ECL immunosensor was successfully fabricated. It is for the first time that the unique function of PDDA for enhancing QDs ECL was explored and used to develop an ECL biosensor. The principle of ECL detection for target Ag is based on the increment of steric hindrance after immunoreaction, which resulted in the decrease of ECL intensity. The Ag concentration was determined in the linear range of 0.002-500 ng L(-1) with a detection limit of 0.6 pg mL(-1). The sensor showed good fabrication and detection reproducibility, and the assay results were in acceptable agreement with the clinical sera tests, showing a promising clinical application. This work opened the new avenues for applying QDs ECL in highly sensitive bioassays.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app