JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Sleep extension in humans: sleep stages, EEG power spectra and body temperature.

Sleep 1991 August
In eight male subjects the electroencephalogram (EEG) and core body temperature (Tcore) were recorded during long sleep episodes from 0000 to 1,500 hr. EEGs were visually scored and subjected to spectral analysis by fast Fourier transform. Slow-wave sleep [SWS, i.e. stages 3 + 4 of non-rapid eye movement (NREM) sleep and slow wave activity (SWA, mean EEG power density in the range of 0.75-4.5 Hz)] in NREM sleep attained highest values in the first 3 hr of sleep and lowest values in the morning hours when rapid eye movement (REM) sleep was at its maximum. Wakefulness was significantly enhanced in the last 3 hr of the recording period. Occasional NREM episodes containing SWS were observed in the late morning and early afternoon. However, no significant increase in SWS or SWA in the last 3 hr of the sleep episode over any of the preceding 3-hr intervals was present and SWA in this interval was significantly below the values observed at the beginning of sleep. The duration of NREM episodes varied significantly over the sleep episode. Analysis of the dynamics of SWA within NREM episodes revealed that SWA gradually rose during the episode. Consequently, SWA averaged per episode was positively correlated with episode duration. Tcore dropped in the initial part of sleep, rose during the morning hours and reached values in the afternoon that were higher than at the beginning of sleep. Thus the time course of Tcore dissociated from the time course of SWA. This indicates that SWA in NREM sleep is not directly related to the variation in core body temperature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app