Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Osteopontin increases migration and MMP-9 up-regulation via alphavbeta3 integrin, FAK, ERK, and NF-kappaB-dependent pathway in human chondrosarcoma cells.

Tumor malignancy is associated with several features such as proliferation ability and frequency of metastasis. Osteopontin (OPN), which abundantly expressed in bone matrix, is involved in cell adhesion, migration, invasion and proliferation via interaction with its receptor, that is, alphavbeta3 integrin. However, the effect of OPN on migration activity in human chondrosarcoma cells is mostly unknown. Here we found that OPN increased the migration and expression of matrix metalloproteinase (MMP)-9 in human chondrosarcoma cells (JJ012 cells). RGD peptide, alphavbeta3 monoclonal antibody and MAPK kinase (MEK) inhibitors (PD98059 and U0126) but not RAD peptide inhibited the OPN-induced increase of the migration and MMP-9 up-regulation of chondrosarcoma cells. OPN stimulation increased the phosphorylation of focal adhesion kinase (FAK), MEK and extracellular signal-regulated kinase (ERK). In addition, treatment of JJ012 cells with NF-kappaB inhibitor (PDTC) or IkappaB protease inhibitor (TPCK) inhibited OPN-induced cell migration and MMP-9 up-regulation. Stimulation of JJ012 cells with OPN also induced IkappaB kinase alpha/beta (IKK alpha/beta) phosphorylation, IkappaBalpha phosphorylation, p65 Ser(536) phosphorylation, and kappaB-luciferase activity. The OPN-mediated increases in MMP-9 and kappaB-luciferase activities were inhibited by RGD peptide, PD98059 or FAK and ERK2 mutant. Taken together, our results indicated that OPN enhances the migration of chondrosarcoma cells by increasing MMP-9 expression through the alphavbeta3 integrin, FAK, MEK, ERK and NF-kappaB signal transduction pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app