Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Micro ATR-FTIR spectroscopic imaging of atherosclerosis: an investigation of the contribution of inducible nitric oxide synthase to lesion composition in ApoE-null mice.

Analyst 2009 June
Inducible nitric oxide synthase (iNOS) has previously been shown to contribute to atherosclerotic lesion formation and protein nitration. Micro attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopic imaging was applied ex vivo to analyse lesions in atherosclerotic (ApoE-/-) mice. Histologies of cardiovascular tissue of ApoE-/- mice that contain the gene for iNOS and ApoE-/- mice without iNOS (ApoE-/-iNOS-/- mice) were examined. Spectroscopic imaging of the aortic root revealed that iNOS did not affect the composition of the tunica media; furthermore, irrespective of iNOS presence, lipid esters were found to form the atherosclerotic plaque. ApoE-/- mouse aortic root lesions exhibited a more bulky atheroma that extended into the medial layer; signals characteristic of triglycerides and free fatty acids were apparent here. In ApoE-/-iNOS-/- mouse specimens, lesions composed of free cholesterol were revealed. ATR-FTIR spectra of the intimal plaque from the two mouse strains showed higher lipid concentrations in ApoE-/- mice, indicating that iNOS contributes to lesion formation. The reduction of lesion prevalence in ApoE-/-iNOS-/- mice compared with ApoE-/- mice is consistent with previous data. Moreover, the analysis of the plaque region revealed a change in the spectral position of the amide I band, which may be indicative of protein nitration in the ApoE-/- mouse, correlating with a more ordered (beta-sheet) structure, while a less ordered structure was apparent for the ApoE-/-iNOS-/- mouse, in which protein nitration is attenuated. These results indicate that micro ATR-FTIR spectroscopic imaging with high spatial resolution is a valuable tool for investigating differences in the structure and chemical composition of atherosclerotic lesions of ApoE-/- and ApoE-/-iNOS-/- mice fed a high-fat Western diet and can therefore be applied successfully to the study of mouse models of atherosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app