JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Differential expression of the CBF pathway and cell cycle-related genes in Arabidopsis accessions in response to chronic low-temperature exposure.

Plant Biology 2009 May
Low, non-freezing temperatures are a major factor limiting growth and development of vegetation in cold climates. Activation of the C-repeat binding factor (CBF) regulatory pathway by acute cold treatment is important for cold acclimation and freezing tolerance in Arabidopsis thaliana; however, the potential role of this pathway in response to chronic cold treatment has been less well characterised. We studied long-term (chronic) effects of low, non-freezing temperatures on the expression of CBF pathway genes (CBF2/3, COR15a, RD29A) and cell cycle-related genes (CDKA;1, CYCD2;1, CYCB1;1) in roots of accessions from habitats differing in growing season temperatures. Elongation rates of primary roots at 21 and 10 degrees C were not significantly correlated with average growing season temperatures, indicating that there is no ecotypic differentiation for these traits. Measurements of mRNA accumulation in roots of seven accessions showed that expression of CBF2/3, COR15a and RD29A is induced by both acute cold treatment (2-24 h at 4 degrees C) and chronic cold treatment (5-6 weeks at 10 degrees C), while CYCB1;1 is only induced by chronic cold treatment. RD29A and COR15a mRNA levels were correlated (P < 0.05) with the rate of root elongation in the cold for three high-altitude accessions relative to the common laboratory stain, Col-0. Our results are consistent with the hypothesis that induction of CBF2/3, COR15a, RD29A and CYCB1;1 is a physiological response to cold that, in the case of RD29A and COR15a, may be important for root growth at low temperatures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app