JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Dosing regimen has a significant impact on the efficiency of morpholino oligomer-induced exon skipping in mdx mice.

Human Gene Therapy 2009 September
Duchenne muscular dystrophy (DMD) is a myodegenerative disorder caused primarily by mutations that create premature termination of dystrophin translation. The antisense oligonucleotide approach for skipping dystrophin exons allows restoration of the correct reading frame in the dystrophin transcript, thus producing a shorter protein. A similar approach in humans would result in the conversion of DMD to the milder Becker muscular dystrophy. It has been demonstrated previously that repeated intravascular injection of phosphorodiamidate morpholino oligomers (PMOs) in the mdx mouse induces more dystrophin expression than a single injection, but this approach is costly, and data demonstrating the safety of high doses of systemically injected PMO are unavailable. Furthermore, several publications have demonstrated the efficacy of peptide-conjugated PMOs, but the clinical applicability of such compounds is unclear at this stage. Here, we report that multiple intravascular injections of low doses of naked PMO show significantly more dystrophin-positive fibers in a variety of muscle groups, 8 weeks after administration compared with a single dose of the same total amount. After administration of a total of 200 mg of PMO per kilogram, histological features, such as the cross-sectional area, centronucleation index, and expression of the dystrophin-associated protein complex, showed significant improvement in mice treated by repeated injection. Furthermore, four administrations of just 5 mg/kg induced a significant amount of dystrophin expression. These results clearly demonstrate the key role of the optimization of dosing regimen for the systemic administration of PMO in patients, and support the clinical feasibility of this approach with naked PMO.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app