JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Enhancement of bioenergy production and effluent quality by integrating optimized acidification with submerged anaerobic membrane bioreactor.

To ensure effluent quality in the treatment of high-strength organic waste and enhance CH(4) production, this study investigates the applicability of process optimization and a submerged anaerobic membrane bioreactor (SAMBR) for a two-phase anaerobic digestion (TPAD) system. The use of response surface methodology (RSM) suggests that the optimum conditions for maximum volatile fatty acids (VFA) production were a hydraulic retention time (HRT) of 2.01 days and a substrate concentration of 29.30 g/L based on chemical oxygen demands (COD). A confirmation experiment showed that an empirical model could predict a VFA increase of 76% under the proposed conditions with a relative error of 4%. SAMBRs could convert the VFA in acidogenic effluent to CH(4) with an average production rate of 0.28 m(3)/m(3)/d in an HRT of 14 days. All of the SAMBRs could achieve COD removal rates of over 99% by the increased solid retention time and secondary membrane formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app