Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Increased myocardial NAD(P)H oxidase-derived superoxide causes the exacerbation of postinfarct heart failure in type 2 diabetes.

Type 2 diabetes adversely affects the outcomes in patients with myocardial infarction (MI), which is associated with the development of left ventricular (LV) failure. NAD(P)H oxidase-derived superoxide (O(2)(-)) production is increased in type 2 diabetes. However, its pathophysiological significance in advanced post-MI LV failure associated with type 2 diabetes remains unestablished. We thus hypothesized that an inhibitor of NAD(P)H oxidase activation, apocynin, could attenuate the exacerbated LV failure after MI in high-fat diet (HFD)-induced obese mice with type 2 diabetes. Male C57BL/6J mice were fed on either HFD or normal diet (ND) for 8 wk. At 4 wk of feeding, MI was created in mice by ligating the left coronary artery. HFD-fed MI mice were treated with either 10 mmol/l apocynin or vehicle. HFD + MI had significantly greater LV end-diastolic diameter (LVEDD; 5.7 +/- 0.1 vs. 5.3 +/- 0.2 mm), end-diastolic pressure (12 +/- 2 vs. 8 +/- 1 mmHg), and lung weight/tibial length (10.1 +/- 0.3 vs. 8.7 +/- 0.7 mg/mm) than ND + MI, which was accompanied by an increased interstitial fibrosis of noninfarcted LV. Treatment of HFD + MI with apocynin significantly decreased LVEDD (5.4 +/- 0.1 mm), LV end-diastolic pressure (9.7 +/- 0.8 mmHg), lung weight/tibial length (9.0 +/- 0.3 mg/mm), and concomitantly interstitial fibrosis of noninfarcted LV to the ND + MI level without affecting body weight, glucose metabolism, and infarct size. NAD(P)H oxidase activity and O(2)(-) production were increased in noninfarcted LV tissues from HFD + MI, both of which were attenuated by apocynin to the ND + MI level. Type 2 diabetes was associated with the exacerbation of LV failure after MI via increasing NAD(P)H oxidase-derived O(2)(-), which may be a novel important therapeutic target in advanced heart failure with diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app