Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Sensitization of human K562 leukemic cells to TRAIL-induced apoptosis by inhibiting the DNA-PKcs/Akt-mediated cell survival pathway.

Biochemical Pharmacology 2009 September 16
Despite the fact that many cancer cells are sensitive to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, human K562 leukemic cells showed resistance to TRAIL-induced apoptosis. Interestingly, K562/R3 cells, a stable TRAIL-sensitive variant isolated from K562 cells, showed down-regulation of DNA-PK/Akt pathway and a high responsiveness to TRAIL-mediated growth inhibition and apoptosis. We revealed that siRNA-mediated suppression of DNA-PKcs led to decreased phosphorylation of Akt and Bad, a target molecule of Akt, and increased expression of DR4/DR5. Also, we found that suppression of DNA-PKcs using siRNA down-regulated c-FLIP and sensitized K562 cells to TRAIL-induced apoptosis through activation of caspase-8, -9 and -3. In addition, we revealed that treatment with DMNB, a specific inhibitor of DNA-PK, resulted in an increase of DR4/DR5 mRNA levels and their surface expression and a decrease of c-FLIP mRNA levels in K562 cells. DMNB potentiated TRAIL-induced cytotoxicity and apoptosis through inhibition of DNA-PK/Akt pathway and activation of caspase-8, -9 and -3 in K562 cells. This study is the first to show that a protective role of DNA-PK/Akt pathway against TRAIL-induced apoptosis and thus TRAIL in combination with agents that inhibit DNA-PK/Akt pathway would have clinical applicability in treating TRAIL-insensitive human leukemic cells. This model may provide a novel framework for overcoming TRAIL resistance of other cancer cells with agents that inhibit DNA-PK/Akt pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app