JOURNAL ARTICLE

Maldi-tof mass spectrometry profiling of polar and nonpolar fractions in heated vegetable oils

Gianluca Picariello, Antonello Paduano, Raffaele Sacchi, Francesco Addeo
Journal of Agricultural and Food Chemistry 2009 June 24, 57 (12): 5391-400
19462979
Triacylglycerol oxidation of thermally stressed (6 h at 180 degrees C, simulating deep-frying conditions) edible vegetable oil (sunflower and olive) was studied using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Chromatographic separation of the nonpolar and polar components from the heated oil performed on silica gel prior to MS analysis significantly enhanced the detection of oxidized components. The spectra contained signals that were assigned to triacylglycerols (TAG), diacylglycerols (DAG), triacylglycerol oxidative dimers, oxidized TAG, and TAG fragments arising from the homolytic beta-scission of linoleyl, peroxy, and alkoxy radicals. Enrichment of the polar compounds prevented mass spectrometric ion suppression, thus allowing the detection of minor species originating from thermal oxidation. In addition, this allowed the monitoring of polar compounds in vegetable oils undergoing mild thermal treatment. As such, chromatographic separation coupled with MALDI-TOF MS analysis provided a rapid, sensitive, and specific tool to assess the thermal oxidation of vegetable oils.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
19462979
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"