JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Enhancement of olive mill wastewater biodegradation by homogeneous and heterogeneous photocatalytic oxidation.

Olive mills wastewater (OMW) is characterized by its high organic content and refractory compounds. In this study, an advanced technology for the treatment of the recalcitrant contaminants of OMW has been investigated. The technique used was either photo-Fenton as homogeneous photocatalytic oxidation or UV/semi-conductor catalyst (such as TiO(2), ZrO(2) and FAZA) as heterogeneous photocatalytic oxidation for treatment of OMW. For both the processes, the effect of irradiation time, amounts of photocatalysts and semi-conductors, and initial concentration of hydrogen peroxide has been studied. At the optimum conditions, photo-Fenton process achieved COD, TOC, lignin (total phenolic compounds) and total suspended solids (TSSs) removal values of 87%, 84%, 97.44% and 98.31%, respectively. The corresponding values for UV/TiO(2) were 68.8%, 67.3%, 40.19% and 48.9%, respectively, after 80 min irradiation time. The biodegradability expressed by BOD(5)/COD ratio for treated wastewater was ranged from 0.66 to 0.8 compared to 0.19 for raw wastewater indicating enhancement of biodegradation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app