JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Inhibition of endothelial progenitor cell glycogen synthase kinase-3beta results in attenuated neointima formation and enhanced re-endothelialization after arterial injury.

AIMS: Endothelial progenitor cells (EPCs) are circulating pluripotent vascular cells capable of enhancing re-endothelialization and diminishing neointima formation following arterial injury. Glycogen synthase kinase (GSK)-3beta is a protein kinase that has been implicated in the regulation of progenitor cell biology. We hypothesized that EPC abundance and function could be enhanced with the use of an inhibitor of GSK-3beta (GSKi), thereby resulting in improved arterial repair.

METHODS AND RESULTS: Human EPCs were expanded ex vivo, treated with a specific GSKi, and then assessed for both yield and functional characteristics by in vitro assays for adherence, apoptosis, and survival. In vivo functionality of treated human EPCs was assessed in immune-tolerant mice subjected to femoral artery wire injury. Re-endothelialization was assessed at 72 h and neointima formation at 7 and 14 days following injury. GSKi treatment resulted in an improvement in the yield of EPCs and a reduction in apoptosis in cells derived from both healthy controls and patients with coronary artery disease. Treatment also increased vascular endothelial growth factor secretion, up-regulated expression of mRNA for the alpha-4 integrin subunit, and improved adhesion, an effect which could be abrogated with an alpha-4 integrin blocking antibody. EPCs without or with ex vivo GSKi treatment enhanced re-endothelialization 72 h following injury as well as reduced neointima formation at 7 days (e.g. endothelial coverage: 7.2 +/- 1.7% vs. 70.7 +/- 5.8% vs. 87.2 +/- 4.1%; intima to media ratios: 1.05 +/- 0.19 vs. 0.39 +/- 0.08 vs. 0.14 +/- 0.02; P < 0.05 for all comparisons), an effect that was persistent at 14 days.

CONCLUSION: GSKi improves the functional profile of EPCs and is associated with improved re-endothelialization and reduced neointima formation following injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app