JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Innate hemocyte responses of Malacosoma disstria larvae (C. Insecta) to antigens are modulated by intracellular cyclic AMP.

Invertebrate intracellular hemocyte signaling pathways affecting cellular-antigen responses, although defined for molluscs and some arthropods including dipteran insects, is less known for lepidopterans. Hemocytic-antigen responses of the arboreal pest lepidopteran Malacosoma disstria are linked to cAMP-dependent protein kinase A implicating cAMP in cellular hemocyte immune responses. The purpose in the present study was to determine intracellular cAMP effects on larval M. disstria hemocytes adhering to slides and bacteria. Altering adenylate cyclase and phosphodiesterase activities as well as cAMP levels in vitro and in vivo changed hemocyte responses to antigens. Quiescent hemocytes had high cAMP levels due to adenylate cyclase activity and possibly low phosphodiesterase (type 4) activity. Antigen contact diminished hemocytic cAMP levels. Inhibiting adenylate cyclase increased hemocyte-antigen and hemocyte-hemocyte adhesion, the latter producing nodules in vivo without bacterial antigens. Inhibiting phosphodiesterase type 4 produced the reverse effects. Pharmacologically increasing intracellular cAMP in attached hemocytes caused many of the cells to detach. Diminished intracellular cAMP changed hemograms in vivo in bacteria-free larvae comparable to changes induced by the bacterium, Bacillus subtilis, by producing nodules. Lowering cAMP enhanced also the removal of Xenorhabdus nematophila and B. subtilisin vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app