JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Electrochemical degradation of pentachlorophenol on a palladium modified gas-diffusion electrode.

Pd/C catalyst was prepared by a hydrogen reduction method and used for making a Pd/C gas-diffusion electrode. It was fully characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV). In the catalyst, Pd particles with an average size of 4.0 nm were highly dispersed in the activated carbon with an amorphous structure; Pd content on the surface of the Pd/C catalyst reached 1.3 at% (atomic concentration). The Pd/C gas-diffusion electrode was then used as the cathode to investigate the electrochemical degradation of pentachlorophenol (PCP) in a diaphragm electrolysis device, feeding firstly with hydrogen gas then with air, compared with the carbon/polytetrafluoroethylene (C/PTFE) gas-diffusion cathode. The Pd/C gas-diffusion cathode can not only reductively dechlorinate PCP by feeding hydrogen gas, but also accelerate the two-electron reduction of O2 to hydrogen peroxide (H2O2) by feeding air. Therefore, both the removal efficiency and the dechlorination degree of PCP exceeded 80% after 100 min, and the average removal efficiency of PCP in terms of total organic carbon (TOC) was more than 75% after 200 min by using Pd/C gas-diffusion cathode, which was better than that of the C/PTFE gas-diffusion cathode. Phenol was identified as the dechorination product using high-performance liquid chromatography (HPLC).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app