COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

CB1 receptor-independent actions of SR141716 on G-protein signaling: coapplication with the mu-opioid agonist Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol unmasks novel, pertussis toxin-insensitive opioid signaling in mu-opioid receptor-Chinese hamster ovary cells.

The CB(1) cannabinoid receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride (SR141716) has been shown by many investigators to inhibit basal G-protein activity, i.e., to display inverse agonism at high concentrations. However, it is not clear whether this effect is cannabinoid CB(1) receptor-mediated. Using the ligand-stimulated [(35)S]guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) assay, we have found that 10 microM SR141716 slightly but significantly decreases the basal [(35)S]GTPgammaS binding in membranes of the wild-type and CB(1) receptor knockout mouse cortex, parental Chinese hamster ovary (CHO) cells, and CHO cells stably transfected with micro-opioid receptors, MOR-CHO. Accordingly, we conclude that the inverse agonism of SR141716 is CB(1) receptor-independent. Although the specific MOR agonist Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol (DAMGO) saturably and concentration-dependently stimulated [(35)S]GTPgammaS binding, SR141716 (10 microM) inhibited the basal by 25% and competitively inhibited DAMGO stimulation in the mouse cortex. In MOR-CHO membranes, DAMGO caused a 501 +/- 29% stimulation of the basal activity, which was inhibited to 456 +/- 22% by 10 microM SR141716. The inverse agonism of SR141716 was abolished, and DAMGO alone displayed weak, naloxone-insensitive stimulation, whereas the combination of DAMGO and SR141716 (10 microM each) resulted in a 169 +/- 22% stimulation of the basal activity (that was completely inhibited by the prototypic opioid antagonist naloxone) because of pertussis toxin (PTX) treatment to uncouple MORs from G(i)/G(o) proteins. SR141716 proved to bind directly to MORs with low affinity (IC(50) = 5.7 microM). These results suggest the emergence of novel, PTX-insensitive G-protein signaling that is blocked by naloxone when MORs are activated by the combination of DAMGO and SR141716.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app