Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Synthesis and characterization of fluorinated magnetic core-shell nanoparticles for inhibition of insulin amyloid fibril formation.

Nanotechnology 2009 June 4
Maghemite (gamma-Fe2O3) magnetic nanoparticles of 15.0 +/- 2.1 nm are formed by nucleation followed by controlled growth of maghemite thin films on gelatin-iron oxide nuclei. Uniform magnetic gamma-Fe2O3/poly (2,2,3,3,4,4,4-heptafluorobutyl acrylate) (gamma-Fe2O3/PHFBA) core-shell nanoparticles are prepared by emulsion polymerization of the fluorinated monomer 2,2,3,3,4,4,4-heptafluorobutyl acrylate (HFBA) in the presence of the maghemite nanoparticles. The kinetics of the insulin fibrillation process in the absence and in the presence of the gamma-Fe2O3/PHFBA core-shell nanoparticles are elucidated. A significant direct slow transition from alpha-helix to beta-sheets during insulin fibril formation is observed in the presence of the gamma-Fe2O3/PHFBA nanoparticles. This is in contradiction to our previous manuscript, which illustrated that the gamma-Fe2O3 core nanoparticles do not affect the kinetics of the formation of the insulin fibrils, and to other previous publications that describe acceleration of the fibrillation process by using various types of nanoparticles. These core-shell nanoparticles may therefore be also useful for the inhibition of conformational changes of other amyloidogenic proteins that lead to neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, mad cow and prion diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app