COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Human cardiomyocyte progenitor cell transplantation preserves long-term function of the infarcted mouse myocardium.

AIMS: Recent clinical studies revealed that positive results of cell transplantation on cardiac function are limited to the short- and mid-term restoration phase following myocardial infarction (MI), emphasizing the need for long-term follow-up. These transient effects may depend on the transplanted cell-type or its differentiation state. We have identified a population of cardiomyocyte progenitor cells (CMPCs) capable of differentiating efficiently into beating cardiomyocytes, endothelial cells, and smooth muscle cells in vitro. We investigated whether CMPCs or pre-differentiated CMPC-derived cardiomyocytes (CMPC-CM) are able to restore the injured myocardium after MI in mice.

METHODS AND RESULTS: MI was induced in immunodeficient mice and was followed by intra-myocardial injection of CMPCs, CMPC-CM, or vehicle. Cardiac function was measured longitudinally up to 3 months post-MI using 9.4 Tesla magnetic resonance imaging. The fate of the human cells was determined by immunohistochemistry. Transplantation of CMPCs or CMPC-CM resulted in a higher ejection fraction and reduced the extent of left ventricular remodelling up to 3 months after MI when compared with vehicle-injected animals. CMPCs and CMPC-CM generated new cardiac tissue consisting of human cardiomyocytes and blood vessels. Fusion of human nuclei with murine nuclei was not observed.

CONCLUSION: CMPCs differentiated into the same cell types in situ as can be obtained in vitro. This excludes the need for in vitro pre-differentiation, making CMPCs a promising source for (autologous) cell-based therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app