JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Heme arginate suppresses cardiac lesions and hypertrophy in deoxycorticosterone acetate-salt hypertension.

In hypertension, elevated levels of oxidative/inflammatory mediators including nuclear factor kappaB (NF-kappaB), activating protein (AP-1), c-Jun-NH2-terminal kinase (JNK), and cell-regulatory proteins such as transforming growth factor beta (TGF-beta), trigger the mobilization of extracellular matrix (ECM) leading to fibrosis, hypertrophy and impairment of cardiac function. Although the heme oxygenase (HO) system is cytoprotective, its effects on cardiac fibrosis and hypertrophy in deoxycorticosterone acetate (DOCA-salt) hypertension are not completely elucidated. Here, we report cardioprotection by the HO inducer, heme arginate against histopathological lesions in DOCA-hypertension. Treatment with heme arginate restored physiological blood pressure, and abated cardiac hypertrophy (3.75 +/- 0.12 vs. 3.19 +/- 0.09 g/kg body wt; n =16, P < 0.01), left-to-right ventricular ratio (6.67 +/- 0.62 vs. 4.39 +/- 0.63; n = 16, P < 0.01), left ventricular mass (2.48 +/- 0.14 vs. 2.01 +/- 0.09 g/kg body wt; n = 16, P < 0.01) and left-ventricular wall thickness (2.82 +/- 0.16 vs. 1.98 +/- 0.14 mm; n = 16, P < 0.01), whereas the HO inhibitor, chromium mesoporphyrin, exacerbated hypertrophy and cardiac lesions. The suppression of cardiac hypertrophy was accompanied by a robust increase in HO-1, HO activity, cyclic guanosine monophosphate (cGMP), ferritin and the total antioxidant capacity, whereas 8-isoprostane, NF-kappaB, JNK, AP-1, TGF-beta, fibronectin and collagen-I were significantly abated. Correspondingly, histopathological parameters that depict progressive cardiac damage, including fibrosis, interstitial/perivascular collagen deposition, scarring, muscle-fiber thickness, muscular hypertrophy and coronary-arteriolar thickening were abated. Our study suggests that upregulating the HO system lowers blood pressure, potentiates the antioxidant status in tissues, suppresses oxidative stress/mediators such as NF-kappaB, AP-1 and cJNK, and suppresses the mobilization of ECM proteins like TGF-beta, collagen and fibronectin, with corresponding reduction of cardiac histopathological lesion and hypertrophy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app