Add like
Add dislike
Add to saved papers

Angiotensin II enhances the increase in monocyte chemoattractant protein-1 production induced by tumor necrosis factor-{alpha} from 3T3-L1 preadipocytes.

Monocyte chemoattractant protein-1 (MCP-1) and angiotensin II (Ang II) in adipose tissue are thought to induce systemic insulin resistance in rodents; but the precise mechanism is not fully clarified. We examined the mechanism of Ang II-induced and/or tumor necrosis factor-alpha (TNF-alpha)-induced MCP-1 production from 3T3-L1 preadipocytes. The MCP-1 protein and MCP-1 mRNA expression in 3T3-L1 preadipocytes were increased significantly by stimulation with TNF-alpha. We found no significant increase in MCP-1 concentrations by Ang II alone; but it enhanced the TNF-alpha-induced MCP-1 mRNA expression in a dose-dependent manner. Then, we examined the effect of Ang II and/or TNF-alpha on phosphorylation of extracellular signal-regulated kinase (ERK), p38MAPK, and IkappaB-alpha. Ang II and TNF-alpha clearly enhanced ERK and p38MAPK phosphorylation. IkappaB-alpha phosphorylation was enhanced by TNF-alpha, but not by Ang II. The MCP-1 mRNA expression induced by TNF-alpha and co-stimulation with Ang II was inhibited by either ERK inhibitor, p38MAPK inhibitor or NF-kappaB inhibitor. Moreover, Ang II enhanced the activation of AP-1 (c-fos) induced by TNF-alpha. Our results suggest that Ang II may serve as an additional stimulus on the TNF-alpha-induced MCP-1 production through the ERK-and p38MAPK-dependent pathways probably due to AP-1 activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app