JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Involvement of reactive oxygen species and caspase-dependent pathway in berberine-induced cell cycle arrest and apoptosis in C6 rat glioma cells.

The cytotoxicity of berberine on C6 rat glioma cells indicated that berberine induced morphological changes and caused cell death through G2/M arrest and apoptosis. While undergoing apoptosis, there was a remarkable accumulation of G2/M cells with the upregulatoin of Wee1 but it also inhibited cyclin B, CDK1 and Cdc25c that led to G2/M arrest. Along with cytotoxicity in C6 cells, several apoptotic events including mitochondrial cytochrome c release, activation of caspase-9, -3 and -8 and DNA fragmentation were induced. Berberine increased the levels of GADD153 and GRP 78 in C6 cells based on the examination of Western blotting and this is a major hallmark of endoplasmic reticulum (ER) stress. We also found that berberine promoted the production of reactive oxygen species and Ca2+ in C6 cells. Western blotting assay also showed that berberine inhibited the levels of anti-apoptotic protein Bcl-2 but increased the levels of pro-apoptotic protein Bax before leading to a decrease in the levels of mitochondrial membrane potential (DeltaPsim) followed by cytochrome c release that caused the activations of capase-9 and -3 for apoptotic occurrence. The caspase-8, -9 and -3 were activated by berberine in C6 cells based on the substrate solution (PhiPhiLux-G1D1, CaspaLux 8-L1D2, CaspaLux 9-M1D2 for caspase-3, -8 and -9, respectively) and analyzed by flow cytometer and each inhibitor of caspase-8, -9 and -3 led to increase the percentage of viable C6 cells after exposure to berberine. This finding was also confirmed by Western blot assay which showed that berberine promoted the active form of caspase-8, -9 and -3. These results demonstrate that the cytotoxicity of berberine in C6 rat glioma cells is attributable to apoptosis mainly through induced G2/M-arrested cells, in an ER-dependent manner, via a mitochondria-dependent caspase pathway regulated by Bax and Bcl-2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app