COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Identification of an additional supraspinal component to the analgesic mechanism of action of buprenorphine.

BACKGROUND AND PURPOSE: Buprenorphine displays attributes of opioids, but also some features distinct from them. We examined spinal and supraspinal signal transduction of buprenorphine-induced anti-nociception in mice compared with morphine and fentanyl.

EXPERIMENTAL APPROACH: The opioid receptor antagonist naloxone, Pertussis toxin (PTX), G(z) protein antisense and nociceptin/orphanin-FQ receptor agonist nociceptin, and antagonist, JTC-801, were injected supraspinally (intracerebroventricular) and spinally (intrathecal). Also the cell-permeable Ser/Thr protein phosphatase inhibitor okadaic acid was given supraspinally.

KEY RESULTS: Spinal naloxone (20 microg) or PTX (1 microg) attenuated morphine, fentanyl and buprenorphine (s.c.) anti-nociception. Supraspinal naloxone or PTX attenuated morphine and fentanyl, but not buprenorphine anti-nociception. Spinal G(z) protein antisense did not alter buprenorphine, morphine or fentanyl anti-nociception and supraspinal G(z)-antisense did not alter morphine or fentanyl anti-nociception. However, supraspinal G(z)-antisense (not random sense) reduced buprenorphine anti-nociception. Peripheral JTC-801 (1 mgxkg(-1), i.p.) enhanced the ascending (3 mgxkg(-1)) and descending (30 mgxkg(-1)) portions of buprenorphine's dose-response curve, but only spinal, not supraspinal, nociceptin (10 nmolxL(-1)) enhanced buprenorphine anti-nociception. Intracereboventricular okadaic acid (0.001-10 pg) produced a biphasic low-dose attenuation, high-dose enhancement of buprenorphine(3 or 30 mgxkg(-1), s.c.) anti-nociception, but did not affect morphine or fentanyl anti-nociception.

CONCLUSIONS AND IMPLICATIONS: Buprenorphine has an opioid component to its supraspinal mechanism of analgesic action. Our present results reveal an additional supraspinal component insensitive to naloxone, PTX and nociceptin/orphanin-FQ, but involving G(z) protein and Ser/Thr protein phosphatase. These data might help explain the unique preclinical and clinical profiles of buprenorphine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app