JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress.

Abscisic acid (ABA) is an important phytohormone regulating seed dormancy, germination, seedling growth, and plant transpiration. We report here an Arabidopsis triple mutant that is disrupted in 3 SNF1-related protein kinase subfamily 2 (SnRK2s) and nearly completely insensitive to ABA. These SnRK2s, SnRK2.2, SnRK2.3, and SnRK2.6 (also known as OST1), are activated by ABA and can phosphorylate the ABA-responsive element binding factor family of b-ZIP transcription factors, which are important for the activation of ABA-responsive genes. Although stomatal regulation of snrk2.6 and seed germination and seedling growth of the snrk2.2/2.3 double mutant are insensitive to ABA, ABA responses are still present in these mutants, and the growth and reproduction of these mutants are not very different from those of the WT. In contrast, the snrk2.2/2.3/2.6 triple mutant grows poorly and produces few seeds. The triple mutant plants lose water extremely fast when ambient humidity is not high. Even on 50 muM ABA, the triple mutant can germinate and grow, whereas the most insensitive known mutants cannot develop on 10 muM ABA. In-gel kinase assays showed that all ABA-activated protein kinase activities are eliminated in the triple mutant. Also, the expression of ABA-induced genes examined is completely blocked in the triple mutant. These results demonstrate that the protein kinases SnRK2.2, SnRK2.3, and SnRK2.6 have redundant functions, and suggest that ABA signaling is critical for plant growth and reproduction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app